18 quadratic opt 2; Hilbert spaces Tuesday, November 3, 2020 4:12 AM

Purtur, Neman,
$$v_{z} = 0$$
 $\forall v_{z} = 0$ $\forall v_{z} = 0$

$$=) \langle u - u_{y} = z^{2} = 0$$
 $\forall v_{z} \in X$

$$= \sum_{x \to 0} \sum_{$$

$$\begin{split} \mathbb{P}_{V}\left(\lambda_{n+1},\mu_{v}\right) &= \left(\lambda_{n}\psi_{n}(\lambda_{v})\right) = \left(\lambda_{n}\psi_{n}(\mu_{v})\right) + \lambda_{n}\left(u-\mu_{v}(h)\right) + \mu_{v}\left(u-\mu_{v}(u)\right) \\ &= \mathcal{O} \quad \text{ev}^{T} \quad ev^{T} \quad ev^{T} \\ &= \mathcal{O}^{T} \quad ev^{T} \quad ev^{T} \\ &= \mathcal{O}^{T} \quad ev^{T} \quad ev^{T} \\ &= \mathcal{O}^{T} \\ \\ &= \mathcal{O}^{T} \\ &= \mathcal{O}^{T$$

Pro the any
$$u \in \mathcal{E}_{1}^{n} \leq u - (u - \langle u, \frac{d_{1}}{d_{1}} \rangle \langle v_{1} \rangle \rangle = \sqrt{2} \mathcal{E}H$$

 $= \langle u, \frac{d_{1}}{d_{2}} \rangle \langle v_{1}, u \rangle \geq 0.$
And $h(u^{-}h(u)v_{1}) = 0$, to $u^{-}h(u)v_{1} \in H.$
So $F_{11}(u) = u - h(u)v_{1}$, the H3 prove uniques of V_{1} is the $(H^{1}) = ($
The halfs of the data of $u = 1 \leq H_{1}$ different and of deality.
But the the original of the space of all continues have former $h \geq 0.$ Maps
in E' and the control twenthet have operated have for the formed,
core startly specified to add the last of the specified to a V_{1} is $E' = 0.$ The formed to be added to a V_{1} is $U_{1} = 0.$
 $H_{1}^{1} = E' = 0.$ Is given by $H_{2}^{1}(u) = \langle u_{1}, v \rangle$.
 $H_{2}^{1} = E = C$ is given by $H_{2}^{1}(u) = \langle u_{1}, v \rangle$.
 $H_{2}^{1} = \frac{d_{1}}{du} =$

Notes Page 9